{"size":{"Width":576,"Height":325},"appearance":{"background":null,"padding":14,"font":{"family":"Courier New","size":10.0,"bold":false,"italic":false,"underline":false,"strikeout":false,"color":"rgb(0,72,168)"},"border":{"on":true,"size":0.0,"style":"solid","color":"#666"},"text":{"wrap":false,"hAlign":"left","vAlign":"top"}},"outputType":"WIDGET","widgetState":null,"outputs":{"console":"<pre class='debug-source'>>library(flipMultivariates)\n</pre>\n<pre class='debug-source'>>\n</pre>\n<pre class='debug-source'>>model.2 <- MachineLearning(formula = OverallSatisfaction ~ Fees + Interestrates + Phoneservice + Branchservice + Onlineservice + ATMavailability,\n algorithm = formAlgorithm,\n weights = QPopulationWeight, subset = QFilter,\n missing = formMissing, output = formOutput, show.labels = !formNames,\n seed = get0("formSeed"),\n cost = get0("formCost"),\n booster = get0("formBooster"),\n grid.search = get0("formSearch"),\n sort.by.importance = get0("formImportance"),\n hidden.nodes = get0("formHiddenLayers"),\n max.epochs = get0("formEpochs"),\n normalize = get0("formNormalize"),\n outcome.color = get0("formOutColor"),\n predictors.color = get0("formPredColor"),\n prior = get0("formPrior"),\n prune = get0("formPruning"),\n early.stopping = get0("formStopping"),\n predictor.level.treatment = get0("formPredictorCategoryLabels"),\n outcome.level.treatment = get0("formOutcomeCategoryLabels"),\n long.running.calculations = get0("formLongRunningCalculations"),\n type = get0("formRegressionType"),\n auxiliary.data = get0("formAuxiliaryVariables"),\n correction = get0("formCorrection"),\n robust.se = get0("formRobustSE", ifnotfound = FALSE),\n importance.absolute = get0("formAbsoluteImportance"),\n interaction = get0("formInteraction"),\n relative.importance = formOutput == "Relative Importance Analysis")\n</pre>\n<pre class='debug-warning'>Unusual observations detected. The largest hat value is 0.025, which is higher than the threshhold of 0.0179 = 2 * (k + 1) / n.\n</pre>\n<pre class='debug-warning'>The outcome variable appears to contain categories (i.e., the values are non-negative integers). A limited dependent variable regression may be more appropriate (e.g., Ordered Logit for ordered categories, Multinomial Logit for unordered categories, Quasi-Poisson Regression for counts).</pre>\r\n<div class=\"debug-summarystatistics\"><table>\r\n<tr><th>Started:</th><td class=utc-time>2018-09-07T00:00:07.000Z</td></tr>\r\n<tr><th>Finished:</th><td class=utc-time>2018-09-07T00:00:00.000Z</td></tr>\r\n<tr><th>Total time:</th><td>-7.36s</td></tr>\r\n<tr><th>Time executing code:</th><td title=\"2h 2m 29.64s\">-7357.00s</td></tr>\r\n<tr><th>Other overhead on R server:</th><td>0.00s</td></tr>\r\n<tr><th>Time spent transferring data:</th><td>2h 2m 29.64s</td></tr>\r\n<tr><th>Data sent to R server:</th><td>-7.2KB</td></tr>\r\n<tr><th>Data received from R server:</th><td>-7.2KB</td></tr>\r\n</table></div>","warning":"Unusual observations detected. The largest hat value is 0.025, which is higher than the threshhold of 0.0179 = 2 * (k + 1) / n.\n\r\nThe outcome variable appears to contain categories (i.e., the values are non-negative integers). A limited dependent variable regression may be more appropriate (e.g., Ordered Logit for ordered categories, Multinomial Logit for unordered categories, Quasi-Poisson Regression for counts).","htmlwidgets":"<div id=\"htmlwidget_container\">\n <div id=\"htmlwidget-da69b3299e57b0e20ec7\" class=\"formattable_widget html-widget\" style=\"width:100%;height:500px;\" width=\"100%\" height=\"500\"></div>\n</div>\n<script type=\"application/json\" data-for=\"htmlwidget-da69b3299e57b0e20ec7\">{\"x\":{\"html\":\"<table class = \\\"table table-condensed\\\"style = \\\"margin:0; border-bottom: 2px solid; border-top: 2px solid; font-size:90%;\\\">\\n<h3 class=\\\".h3\\\" style=\\\"color:#3E7DCC; text-align:left; margin-top:0px; margin-bottom:0\\\">Linear Regression: Overall Satisfaction<\\/h3>\\n<caption style=\\\"caption-side:bottom;font-style:italic; font-size:90%;\\\">n = 896 cases used in estimation; R-squared: 0.5222; Correct predictions: 53.68%; AIC: 1,877.7; multiple comparisons correction: None<\\/caption>\\n <thead>\\n <tr>\\n <th style=\\\"text-align:left;\\\"> <\\/th>\\n <th style=\\\"text-align:right;\\\"> Estimate <\\/th>\\n <th style=\\\"text-align:right;\\\"> Standard Error <\\/th>\\n <th style=\\\"text-align:right;\\\"> <span style='font-style:italic;'>t<\\/span> <\\/th>\\n <th style=\\\"text-align:right;\\\"> <span style='font-style:italic;'>p<\\/span> <\\/th>\\n <\\/tr>\\n <\\/thead>\\n<tbody>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> (Intercept) <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:red\\\">-2.26<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.21 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #fb9080\\\">-10.92<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> Fees <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:blue\\\">0.35<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.03 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">13.98<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> Interest rates <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:blue\\\">0.29<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.02 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">12.23<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> Phone service <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:blue\\\">0.31<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.03 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">11.94<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> Branch service <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:blue\\\">0.38<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.02 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">17.64<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> Online service <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:blue\\\">0.18<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.02 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">7.99<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"vertical-align:middle; text-align:left;\\\"> ATM availability <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"color:blue\\\">0.21<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> 0.02 <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">8.76<\\/span> <\\/td>\\n <td style=\\\"vertical-align:middle; text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n<\\/tbody>\\n<\\/table>\"},\"evals\":[],\"jsHooks\":[]}</script>\n<script type=\"application/htmlwidget-sizing\" data-for=\"htmlwidget-da69b3299e57b0e20ec7\">{\"viewer\":{\"width\":\"100%\",\"height\":350,\"padding\":15,\"fill\":false},\"browser\":{\"width\":\"100%\",\"height\":500,\"padding\":0,\"fill\":false}}</script>","htmlwidget-head":"{\"stylesheets\":[\"https://rserverhtmlwidgetasset.azureedge.net/bootstrap.min-63e52244789ab8f6e3a78818886e7085.css\"],\"javascript\":[\"https://rserverhtmlwidgetasset.azureedge.net/jquery.min-91a24ea414e8c447d647cecab86866c2.js\",\"https://rserverhtmlwidgetasset.azureedge.net/bootstrap.min-326d184c3c13feede563e4adcb5ff2a0.js\",\"https://rserverhtmlwidgetasset.azureedge.net/html5shiv.min-e70767555a95c48c08833356d362ccef.js\",\"https://rserverhtmlwidgetasset.azureedge.net/respond.min-4255ee1a060b15cb2432d0a497a6d510.js\",\"https://rserverhtmlwidgetasset.azureedge.net/htmlwidgets-917a66c6e5036eb1bfd1fb672a82635a.js\",\"https://rserverhtmlwidgetasset.azureedge.net/formattable_widget-d2927ec9dec4a568bd3f4a62041c0ddb.js\"],\"attachments\":[],\"widget-cannot-re-render\":true,\"package\":\"formattable\",\"package_version\":\"0.2.0.2\"}","message":""},"secondsTaken":4.1953783000000007,"updated":"2018-12-07T00:19:24.7877656Z","lastUpdatedMessage":null,"executedCode":"library(flipMultivariates)\n\nmodel.2 <- MachineLearning(formula = OverallSatisfaction ~ Fees + Interestrates + Phoneservice + Branchservice + Onlineservice + ATMavailability,\n algorithm = formAlgorithm,\n weights = QPopulationWeight, subset = QFilter,\n missing = formMissing, output = formOutput, show.labels = !formNames,\n seed = get0(\"formSeed\"),\n cost = get0(\"formCost\"),\n booster = get0(\"formBooster\"),\n grid.search = get0(\"formSearch\"),\n sort.by.importance = get0(\"formImportance\"),\n hidden.nodes = get0(\"formHiddenLayers\"),\n max.epochs = get0(\"formEpochs\"),\n normalize = get0(\"formNormalize\"),\n outcome.color = get0(\"formOutColor\"),\n predictors.color = get0(\"formPredColor\"),\n prior = get0(\"formPrior\"),\n prune = get0(\"formPruning\"),\n early.stopping = get0(\"formStopping\"),\n predictor.level.treatment = get0(\"formPredictorCategoryLabels\"),\n outcome.level.treatment = get0(\"formOutcomeCategoryLabels\"),\n long.running.calculations = get0(\"formLongRunningCalculations\"),\n type = get0(\"formRegressionType\"),\n auxiliary.data = get0(\"formAuxiliaryVariables\"),\n correction = get0(\"formCorrection\"),\n robust.se = get0(\"formRobustSE\", ifnotfound = FALSE),\n importance.absolute = get0(\"formAbsoluteImportance\"),\n interaction = get0(\"formInteraction\"),\n relative.importance = formOutput == \"Relative Importance Analysis\")","lastSavedCode":"library(flipMultivariates)\n\nmodel.2 <- MachineLearning(formula = OverallSatisfaction ~ Fees + Interestrates + Phoneservice + Branchservice + Onlineservice + ATMavailability,\n algorithm = formAlgorithm,\n weights = QPopulationWeight, subset = QFilter,\n missing = formMissing, output = formOutput, show.labels = !formNames,\n seed = get0(\"formSeed\"),\n cost = get0(\"formCost\"),\n booster = get0(\"formBooster\"),\n grid.search = get0(\"formSearch\"),\n sort.by.importance = get0(\"formImportance\"),\n hidden.nodes = get0(\"formHiddenLayers\"),\n max.epochs = get0(\"formEpochs\"),\n normalize = get0(\"formNormalize\"),\n outcome.color = get0(\"formOutColor\"),\n predictors.color = get0(\"formPredColor\"),\n prior = get0(\"formPrior\"),\n prune = get0(\"formPruning\"),\n early.stopping = get0(\"formStopping\"),\n predictor.level.treatment = get0(\"formPredictorCategoryLabels\"),\n outcome.level.treatment = get0(\"formOutcomeCategoryLabels\"),\n long.running.calculations = get0(\"formLongRunningCalculations\"),\n type = get0(\"formRegressionType\"),\n auxiliary.data = get0(\"formAuxiliaryVariables\"),\n correction = get0(\"formCorrection\"),\n robust.se = get0(\"formRobustSE\", ifnotfound = FALSE),\n importance.absolute = get0(\"formAbsoluteImportance\"),\n interaction = get0(\"formInteraction\"),\n relative.importance = formOutput == \"Relative Importance Analysis\")","highlightedCodeSpans":[{"start":65,"length":19,"index":0},{"start":87,"length":4,"index":1},{"start":94,"length":13,"index":0},{"start":110,"length":12,"index":0},{"start":125,"length":13,"index":0},{"start":141,"length":13,"index":0},{"start":157,"length":15,"index":0},{"start":222,"length":13,"index":4},{"start":283,"length":17,"index":6},{"start":311,"length":7,"index":6},{"start":366,"length":11,"index":4},{"start":388,"length":10,"index":4},{"start":415,"length":9,"index":4},{"start":2179,"length":10,"index":4}],"tableTransformations":"<TabularTransformer>\r\n <TabularTransform type=\"Truncation\" truncationHeaderType=\"Column\" />\r\n <TabularTransform />\r\n</TabularTransformer>","tabularFilteringOptions":null,"hasGuiControls":true,"guiControls":{"Code":"form.dropBox({label: \"Outcome\", \n types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"], \n name: \"formOutcomeVariable\",\n prompt: \"Independent target variable to be predicted\"});\nform.dropBox({label: \"Predictor(s)\",\n types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"], \n name: \"formPredictorVariables\", multi:true,\n prompt: \"Dependent input variables\"});\n\n// ALGORITHM\nvar algorithm = form.comboBox({label: \"Algorithm\",\n alternatives: [\"CART\", \"Deep Learning\", \"Gradient Boosting\", \"Linear Discriminant Analysis\",\n \"Random Forest\", \"Regression\", \"Support Vector Machine\"],\n name: \"formAlgorithm\", default_value: \"Regression\",\n prompt: \"Machine learning or regression algorithm for fitting the model\"}).getValue();\nvar regressionType = \"\";\nif (algorithm == \"Regression\")\n regressionType = form.comboBox({label: \"Regression type\", \n alternatives: [\"Linear\", \"Binary Logit\", \"Ordered Logit\", \"Multinomial Logit\", \"Poisson\",\n \"Quasi-Poisson\", \"NBD\"], \n name: \"formRegressionType\", default_value: \"Linear\",\n prompt: \"Select type according to outcome variable type\"}).getValue();\nform.setHeading((regressionType == \"\" ? \"\" : (regressionType + \" \")) + algorithm);\n\n// DEFAULT CONTROLS\nmissing_data_options = [\"Error if missing data\", \"Exclude cases with missing data\", \"Imputation (replace missing values with estimates)\"];\n\n// AMEND DEFAULT CONTROLS PER ALGORITHM\nif (algorithm == \"Support Vector Machine\")\n output_options = [\"Accuracy\", \"Prediction-Accuracy Table\", \"Detail\"];\nif (algorithm == \"Gradient Boosting\") \n output_options = [\"Accuracy\", \"Importance\", \"Prediction-Accuracy Table\", \"Detail\"];\nif (algorithm == \"Random Forest\")\n output_options = [\"Importance\", \"Prediction-Accuracy Table\", \"Detail\"];\nif (algorithm == \"Deep Learning\")\n output_options = [\"Accuracy\", \"Prediction-Accuracy Table\", \"Cross Validation\", \"Network Layers\"];\nif (algorithm == \"Linear Discriminant Analysis\")\n output_options = [\"Means\", \"Detail\", \"Prediction-Accuracy Table\", \"Scatterplot\", \"Moonplot\"];\n\nif (algorithm == \"CART\") {\n output_options = [\"Sankey\", \"Tree\", \"Text\", \"Prediction-Accuracy Table\", \"Cross Validation\"];\n missing_data_options = [\"Error if missing data\", \"Exclude cases with missing data\",\n \"Use partial data\", \"Imputation (replace missing values with estimates)\"]\n}\nif (algorithm == \"Regression\") {\n if (regressionType == \"Multinomial Logit\")\n output_options = [\"Summary\", \"Detail\", \"ANOVA\"];\n else\n output_options = [\"Summary\", \"Detail\", \"ANOVA\", \"Relative Importance Analysis\"]\n if (regressionType == \"Linear\")\n missing_data_options = [\"Error if missing data\", \"Exclude cases with missing data\", \"Use partial data (pairwise correlations)\", \"Multiple imputation\"];\n else\n missing_data_options = [\"Error if missing data\", \"Exclude cases with missing data\", \"Multiple imputation\"];\n}\n\n// COMMON CONTROLS FOR ALL ALGORITHMS\nvar output = form.comboBox({label: \"Output\", prompt: \"The type of output used to show the results\",\n alternatives: output_options, name: \"formOutput\", default_value: output_options[0]}).getValue();\nvar missing = form.comboBox({label: \"Missing data\", \n alternatives: missing_data_options, name: \"formMissing\", default_value: \"Exclude cases with missing data\",\n prompt: \"Options for handling cases with missing data\"}).getValue();\nform.checkBox({label: \"Variable names\", name: \"formNames\", default_value: false, prompt: \"Display names instead of labels\"});\n\n// CONTROLS FOR SPECIFIC ALGORITHMS\n\nif (algorithm == \"Support Vector Machine\")\n form.textBox({label: \"Cost\", name: \"formCost\", default_value: 1, type: \"number\",\n prompt: \"High cost produces a complex model with risk of overfitting, low cost produces a simpler mode with risk of underfitting\"});\n\nif (algorithm == \"Gradient Boosting\") {\n form.comboBox({label: \"Booster\", \n alternatives: [\"gbtree\", \"gblinear\"], name: \"formBooster\", default_value: \"gbtree\",\n prompt: \"Boost tree or linear underlying models\"})\n form.checkBox({label: \"Grid search\", name: \"formSearch\", default_value: false,\n prompt: \"Search for optimal hyperparameters\"});\n}\n\nif (algorithm == \"Random Forest\")\n if (output == \"Importance\")\n form.checkBox({label: \"Sort by importance\", name: \"formImportance\", default_value: true});\n\nif (algorithm == \"Deep Learning\") {\n form.numericUpDown({name:\"formEpochs\", label:\"Maximum epochs\", default_value: 10, minimum: 1, maximum: 1000000,\n prompt: \"Number of rounds of training\"});\n form.textBox({name: \"formHiddenLayers\", label: \"Hidden layers\", prompt: \"Comma delimited list of the number of nodes in each hidden layer\", required: true});\n form.checkBox({label: \"Normalize predictors\", name: \"formNormalize\", default_value: true,\n prompt: \"Normalize to zero mean and unit variance\"});\n}\n\nif (algorithm == \"Linear Discriminant Analysis\") {\n if (output == \"Scatterplot\")\n {\n form.colorPicker({label: \"Outcome color\", name: \"formOutColor\", default_value:\"#5B9BD5\"});\n form.colorPicker({label: \"Predictors color\", name: \"formPredColor\", default_value:\"#ED7D31\"});\n }\n form.comboBox({label: \"Prior\", alternatives: [\"Equal\", \"Observed\",], name: \"formPrior\", default_value: \"Observed\",\n prompt: \"Probabilities of group membership\"})\n}\n\nif (algorithm == \"CART\") {\n form.comboBox({label: \"Pruning\", alternatives: [\"Minimum error\", \"Smallest tree\", \"None\"], \n name: \"formPruning\", default_value: \"Minimum error\",\n prompt: \"Remove nodes after tree has been built\"})\n form.checkBox({label: \"Early stopping\", name: \"formStopping\", default_value: false,\n prompt: \"Stop building tree when fit does not improve\"});\n form.comboBox({label: \"Predictor category labels\", alternatives: [\"Full labels\", \"Abbreviated labels\", \"Letters\"],\n name: \"formPredictorCategoryLabels\", default_value: \"Abbreviated labels\",\n prompt: \"Labelling of predictor categories in the tree\"})\n form.comboBox({label: \"Outcome category labels\", alternatives: [\"Full labels\", \"Abbreviated labels\", \"Letters\"],\n name: \"formOutcomeCategoryLabels\", default_value: \"Full labels\",\n prompt: \"Labelling of outcome categories in the tree\"})\n form.checkBox({label: \"Allow long-running calculations\", name: \"formLongRunningCalculations\", default_value: false,\n prompt: \"Allow predictors with more than 30 categories\"});\n}\n\nif (algorithm == \"Regression\") {\n if (missing == \"Multiple imputation\")\n form.dropBox({label: \"Auxiliary variables\",\n types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"], \n name: \"formAuxiliaryVariables\", required: false, multi:true,\n prompt: \"Additional variables to use when imputing missing values\"});\n form.comboBox({label: \"Correction\", alternatives: [\"None\", \"False Discovery Rate\", \"Bonferroni\"], name: \"formCorrection\",\n default_value: \"None\", prompt: \"Multiple comparisons correction applied when computing p-values of post-hoc comparisons\"});\n var is_RIA = (output == \"Relative Importance Analysis\");\n if (regressionType == \"Linear\" && missing != \"Use partial data (pairwise correlations)\" && missing != \"Multiple imputation\")\n form.checkBox({label: \"Robust standard errors\", name: \"formRobustSE\", default_value: false,\n prompt: \"Standard errors are robust to violations of assumption of constant variance\"});\n if (output == \"Relative Importance Analysis\")\n form.checkBox({label: \"Absolute importance scores\", name: \"formAbsoluteImportance\", default_value: false,\n prompt: \"Show absolute instead of signed importances\"});\n if (regressionType != \"Multinomial Logit\" && (is_RIA || output == \"Summary\"))\n form.dropBox({label: \"Crosstab interaction\", name: \"formInteraction\", types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"],\n required: false, prompt: \"Categorical variable to test for interaction with other variables\"});\n}\n\nform.numericUpDown({name:\"formSeed\", label:\"Random seed\", default_value: 12321, minimum: 1, maximum: 1000000,\n prompt: \"Initializes randomization for imputation and certain algorithms\"});","JSError":null,"JSErrorDetails":null,"ControlDefinitionErrors":null,"InputValidationErrors":null,"Controls":[{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":null,"Page":null,"Group":null,"Type":"Heading","Label":null,"LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":"Linear Regression","Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formOutcomeVariable","Page":null,"Group":null,"Type":"DropBox","Label":"Outcome","LabelEmphasised":false,"Value":"c0553d58-8af3-4e30-b487-05e078e1f7ae","Allowed":null,"Multi":false,"Prompt":"Independent target variable to be predicted","ErrorMessage":"Outcome: Outcome accepts only one input which is of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","Invalid":null,"Required":true,"AllowedTypes":["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"],"OwnerRItemGuid":"bf76f46b-725e-4497-90e6-51206f025f9f","MinInputs":1,"MaxInputs":1,"Height":1,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formPredictorVariables","Page":null,"Group":null,"Type":"DropBox","Label":"Predictor(s)","LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":true,"Prompt":"Dependent input variables","ErrorMessage":"Predictor(s): Predictor(s) accepts only inputs which are of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","Invalid":null,"Required":true,"AllowedTypes":["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"],"OwnerRItemGuid":"bf76f46b-725e-4497-90e6-51206f025f9f","MinInputs":1,"MaxInputs":2147483647,"Height":4,"Duplicates":false,"Values":["18aed103-e2bc-476a-b319-7b3383d4dba0","91086a60-0f35-4a97-b506-92fddaf75a92","8037c521-cbad-4883-bf65-af1045a38b94","c0534d44-ec80-47ea-84b2-38aa3e35bd7a","ab699e6f-c114-4c8c-8c0d-e4fd79ac3301","907c8f04-be73-4352-8e6f-ebaaa3b0679e"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formAlgorithm","Page":null,"Group":null,"Type":"ComboBox","Label":"Algorithm","LabelEmphasised":false,"Value":"Regression","Allowed":null,"Multi":false,"Prompt":"Machine learning or regression algorithm for fitting the model","ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["CART","Deep Learning","Gradient Boosting","Linear Discriminant Analysis","Random Forest","Regression","Support Vector Machine"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formRegressionType","Page":null,"Group":null,"Type":"ComboBox","Label":"Regression type","LabelEmphasised":false,"Value":"Linear","Allowed":null,"Multi":false,"Prompt":"Select type according to outcome variable type","ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Linear","Binary Logit","Ordered Logit","Multinomial Logit","Poisson","Quasi-Poisson","NBD"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formOutput","Page":null,"Group":null,"Type":"ComboBox","Label":"Output","LabelEmphasised":false,"Value":"Summary","Allowed":null,"Multi":false,"Prompt":"The type of output used to show the results","ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Summary","Detail","ANOVA","Relative Importance Analysis"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formMissing","Page":null,"Group":null,"Type":"ComboBox","Label":"Missing data","LabelEmphasised":false,"Value":"Exclude cases with missing data","Allowed":null,"Multi":false,"Prompt":"Options for handling cases with missing data","ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Error if missing data","Exclude cases with missing data","Use partial data (pairwise correlations)","Multiple imputation"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formNames","Page":null,"Group":null,"Type":"CheckBox","Label":"Variable names","LabelEmphasised":false,"Value":false,"Allowed":null,"Multi":false,"Prompt":"Display names instead of labels","ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":"left","Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formCorrection","Page":null,"Group":null,"Type":"ComboBox","Label":"Correction","LabelEmphasised":false,"Value":"None","Allowed":null,"Multi":false,"Prompt":"Multiple comparisons correction applied when computing p-values of post-hoc comparisons","ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["None","False Discovery Rate","Bonferroni"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formRobustSE","Page":null,"Group":null,"Type":"CheckBox","Label":"Robust standard errors","LabelEmphasised":false,"Value":false,"Allowed":null,"Multi":false,"Prompt":"Standard errors are robust to violations of assumption of constant variance","ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":"left","Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formInteraction","Page":null,"Group":null,"Type":"DropBox","Label":"Crosstab interaction","LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":false,"Prompt":"Categorical variable to test for interaction with other variables","ErrorMessage":"Crosstab interaction: Crosstab interaction accepts only one input which is of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","Invalid":null,"Required":false,"AllowedTypes":["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"],"OwnerRItemGuid":"bf76f46b-725e-4497-90e6-51206f025f9f","MinInputs":0,"MaxInputs":1,"Height":1,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formSeed","Page":null,"Group":null,"Type":"NumericUpDown","Label":"Random seed","LabelEmphasised":false,"Value":12321.0,"Allowed":null,"Multi":false,"Prompt":"Initializes randomization for imputation and certain algorithms","ErrorMessage":"Random seed: ","Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":1.0,"Min":1.0,"Max":1000000.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":null,"Page":null,"Group":null,"Type":null,"Label":null,"LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":true}]},"calculating":"Idle","showDebug":false,"layout":"OutputOnly","vSplit":0.25,"hSplit":0.45,"updateWarnings":true,"updateMode":"Manual","warnSlow":false,"Options":{"debugconsole":false,"codeposition":"OutputOnly","splitH":0.45,"splitV":0.25,"update warnings":true,"updating":"Manual","warn slow":false}}