{"size":{"Width":576,"Height":255},"appearance":{"background":null,"padding":14,"font":{"family":"Courier New","size":10.0,"bold":false,"italic":false,"underline":false,"strikeout":false,"color":"rgb(0,72,168)"},"border":{"on":true,"size":0.0,"style":"solid","color":"#666"},"text":{"wrap":false,"hAlign":"left","vAlign":"top"}},"outputType":"WIDGET","widgetState":null,"outputs":{"console":"<pre class='debug-source'>>library(flipRegression)\n</pre>\n<pre class='debug-source'>>if(!(formType == "Linear") || formMissing == "Use partial data (pairwise correlations)" || formMissing == "Multiple imputation")\n formRobustSE = FALSE\n</pre>\n<pre class='debug-source'>>if(formMissing != "Multiple imputation")\n formAuxiliaryVariables = NULL\n</pre>\n<pre class='debug-source'>>glm <- Regression(Q5_5_1 ~ d3 + d1 + Q5_31_1, weights = QPopulationWeight, subset = QFilter, missing = formMissing, output = formOutput, robust.se = formRobustSE, type = formType, show.labels = !formNames, auxiliary = formAuxiliaryVariables)\n</pre>\n<pre class='debug-message'>Coefficient covariances computed by hccm()\n</pre>\n<pre class='debug-warning'>Unusual observations detected. The largest studentized residual is 4.39, which is significant, with a Bonferroni-corrected p-value of 0.01.\n\nThe largest hat value is 0.512, which is higher than the threshhold of 0.0734 = 2 * (k + 1) / n.\n</pre>\n<pre class='debug-warning'>The Variance Inflation Factor of the coefficients are: Gender: Female: 1; Age: 25 to 29: 1; Age: 30 to 34: 1; Age: 35 to 39: 1; Age: 40 to 44: 8; Age: 45 to 49: 1; Age: 50 to 54: 1; Age: 55 to 64: 1; Age: 65 or more: 1; Q5: weight-conscious - Coke: 1. A value of 4 or more indicates the confidence interval for the coefficient is\n twice as wide as they would be for uncorrelated predictors. A value of 10 or more\n indicates high multicollinearity.</pre>\n<pre class='debug-warning'>A Breusch Pagan Test for non-constant variance has been failed (p = < 0.000000000001). A plot of the residuals versus the fitted values of the\n outcome variable may be useful (Regression > Diagnostic > Plot > Residuals vs Fitted).\n A transformation of the outcome or predictor variables may solve this problem. Or, consider using Robust Standard Errors.\n</pre>\n<pre class='debug-warning'>The outcome variable contains only two unique values. A Binary Logit may be\n more appropriate.</pre>\r\n<div class=\"debug-summarystatistics\">\r\n<table>\r\n<tr><th>Total time:</th><td>3.20s</td></tr>\r\n<tr><th>Time on R server:</th><td title=\"rApacheServe 3.14s (pre 0.00s, post 0.00s) httpget_code() setup for eval 0.00s session$eval 3.04s (pre 0.00s, post 0.48s) unexplained 0.10s apparmor forking (pre 0.00s, post 0.00s)\">3.14s</td></tr>\r\n<tr><th>Time evaluating code:</th><td>2.48s</td></tr>\r\n<tr><th>Bytes sent:</th><td>4,720</td></tr>\r\n<tr><th>Bytes received:</th><td>111,747</td></tr>\r\n</table>\r\n</div>","message":"Coefficient covariances computed by hccm()\n","warning":"Unusual observations detected. The largest studentized residual is 4.39, which is significant, with a Bonferroni-corrected p-value of 0.01.\n\nThe largest hat value is 0.512, which is higher than the threshhold of 0.0734 = 2 * (k + 1) / n.\n\r\nThe Variance Inflation Factor of the coefficients are: Gender: Female: 1; Age: 25 to 29: 1; Age: 30 to 34: 1; Age: 35 to 39: 1; Age: 40 to 44: 8; Age: 45 to 49: 1; Age: 50 to 54: 1; Age: 55 to 64: 1; Age: 65 or more: 1; Q5: weight-conscious - Coke: 1. A value of 4 or more indicates the confidence interval for the coefficient is\n twice as wide as they would be for uncorrelated predictors. A value of 10 or more\n indicates high multicollinearity.\r\nA Breusch Pagan Test for non-constant variance has been failed (p = < 0.000000000001). A plot of the residuals versus the fitted values of the\n outcome variable may be useful (Regression > Diagnostic > Plot > Residuals vs Fitted).\n A transformation of the outcome or predictor variables may solve this problem. Or, consider using Robust Standard Errors.\n\r\nThe outcome variable contains only two unique values. A Binary Logit may be\n more appropriate.","htmlwidgets":"<div id=\"htmlwidget_container\">\n <div id=\"htmlwidget-7a523a021b8c2180d428\" class=\"formattable_widget html-widget\" style=\"width:100%;height:500px;\" width=\"100%\" height=\"500\"></div>\n</div>\n<script type=\"application/json\" data-for=\"htmlwidget-7a523a021b8c2180d428\">{\"x\":{\"html\":\"<table class = \\\"table table-condensed\\\"style = \\\"margin:0; border-bottom: 2px solid; border-top: 2px solid; font-size:90%;\\\">\\n<h3 class=\\\".h3\\\" style=\\\"color:#3E7DCC; text-align:left; margin-top:0px; margin-bottom:0\\\">Analysis of Variance: Q5: feminine - Coke<\\/h3>\\n<h5 class=\\\".h5\\\" style=\\\"color:#888888; text-align:left; margin-top:5px; margin-bottom:0\\\">Linear Regression: Anova Table (Type II tests)<\\/h5>\\n<caption style=\\\"caption-side:bottom;font-style:italic; font-size:90%;\\\">n = 327 cases used in estimation; R-squared: 0.06934; Correct predictions: 93.88%; AIC: 9.0246; multiple comparisons correction: None<\\/caption>\\n <thead>\\n <tr>\\n <th style=\\\"text-align:left;\\\"> <\\/th>\\n <th style=\\\"text-align:right;\\\"> Sum Sq <\\/th>\\n <th style=\\\"text-align:right;\\\"> d.f. <\\/th>\\n <th style=\\\"text-align:right;\\\"> F value <\\/th>\\n <th style=\\\"text-align:right;\\\"> <span style='font-style:italic;'>p<\\/span> <\\/th>\\n <\\/tr>\\n <\\/thead>\\n<tbody>\\n <tr>\\n <td style=\\\"text-align:left;\\\"> Gender <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"display: inline-block; direction: rtl; border-radius: 4px; padding-right: 0px; background-color: #DDDDDD; width: 3.11%\\\">‎0.57<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> 1 <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"color:blue\\\">9.82<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">.002<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"text-align:left;\\\"> Age <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"display: inline-block; direction: rtl; border-radius: 4px; padding-right: 0px; background-color: #DDDDDD; width: 2.32%\\\">‎0.42<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> 8 <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span>0.92<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span>.504<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"text-align:left;\\\"> Q5: weight-conscious - Coke <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"display: inline-block; direction: rtl; border-radius: 4px; padding-right: 0px; background-color: #DDDDDD; width: 2.74%\\\">‎0.50<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> 1 <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"color:blue\\\">8.66<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">.003<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"text-align:left;\\\"> Residuals <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"display: inline-block; direction: rtl; border-radius: 4px; padding-right: 0px; background-color: #DDDDDD; width: 100.00%\\\">‎18.29<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> 316 <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span>NA<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span>NA<\\/span> <\\/td>\\n <\\/tr>\\n<\\/tbody>\\n<\\/table>\"},\"evals\":[],\"jsHooks\":[]}</script>\n<script type=\"application/htmlwidget-sizing\" data-for=\"htmlwidget-7a523a021b8c2180d428\">{\"viewer\":{\"width\":\"100%\",\"height\":350,\"padding\":15,\"fill\":false},\"browser\":{\"width\":\"100%\",\"height\":500,\"padding\":0,\"fill\":false}}</script>","htmlwidget-head":"{\"stylesheets\":[\"https://rserverhtmlwidgetasset.azureedge.net/bootstrap.min-eb19ad78829540621a18956d949c048b.css\"],\"javascript\":[\"https://rserverhtmlwidgetasset.azureedge.net/jquery.min-91a24ea414e8c447d647cecab86866c2.js\",\"https://rserverhtmlwidgetasset.azureedge.net/bootstrap.min-326d184c3c13feede563e4adcb5ff2a0.js\",\"https://rserverhtmlwidgetasset.azureedge.net/html5shiv.min-e70767555a95c48c08833356d362ccef.js\",\"https://rserverhtmlwidgetasset.azureedge.net/respond.min-4255ee1a060b15cb2432d0a497a6d510.js\",\"https://rserverhtmlwidgetasset.azureedge.net/htmlwidgets-917a66c6e5036eb1bfd1fb672a82635a.js\",\"https://rserverhtmlwidgetasset.azureedge.net/formattable_widget-d2927ec9dec4a568bd3f4a62041c0ddb.js\"],\"attachments\":[],\"widget-cannot-re-render\":true}"},"secondsTaken":3.2004999,"updated":"2018-07-02T05:48:52.3594068Z","lastUpdatedMessage":null,"executedCode":"library(flipRegression)\nif(!(formType == \"Linear\") || formMissing == \"Use partial data (pairwise correlations)\" || formMissing == \"Multiple imputation\")\n formRobustSE = FALSE\nif(formMissing != \"Multiple imputation\")\n formAuxiliaryVariables = NULL\nglm <- Regression(Q5_5_1 ~ d3 + d1 + Q5_31_1, weights = QPopulationWeight, subset = QFilter, missing = formMissing, output = formOutput, robust.se = formRobustSE, type = formType, show.labels = !formNames, auxiliary = formAuxiliaryVariables)","lastSavedCode":"library(flipRegression)\nif(!(formType == \"Linear\") || formMissing == \"Use partial data (pairwise correlations)\" || formMissing == \"Multiple imputation\")\n formRobustSE = FALSE\nif(formMissing != \"Multiple imputation\")\n formAuxiliaryVariables = NULL\nglm <- Regression(Q5_5_1 ~ d3 + d1 + Q5_31_1, weights = QPopulationWeight, subset = QFilter, missing = formMissing, output = formOutput, robust.se = formRobustSE, type = formType, show.labels = !formNames, auxiliary = formAuxiliaryVariables)","highlightedCodeSpans":[{"start":29,"length":8,"index":4},{"start":54,"length":11,"index":4},{"start":115,"length":11,"index":4},{"start":181,"length":11,"index":4},{"start":271,"length":6,"index":0},{"start":280,"length":2,"index":0},{"start":285,"length":2,"index":0},{"start":290,"length":7,"index":0},{"start":309,"length":17,"index":6},{"start":337,"length":7,"index":6},{"start":356,"length":11,"index":4},{"start":378,"length":10,"index":4},{"start":423,"length":8,"index":4},{"start":448,"length":9,"index":4}],"tableTransformations":"<TabularTransformer>\r\n <TabularTransform type=\"Truncation\" truncationHeaderType=\"Column\" />\r\n <TabularTransform />\r\n</TabularTransformer>","tabularFilteringOptions":null,"hasGuiControls":true,"guiControls":{"Code":"form.dropBox({label: \"Outcome\", \n types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"], \n name: \"formOutcomeVariable\"})\nform.dropBox({label: \"Predictor(s)\",\n types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"], \n name: \"formPredictorVariables\", \n multi:true})\nvar formType = form.comboBox({label: \"Type\", \n alternatives: [\"Linear\", \"Binary Logit\", \"Ordered Logit\", \"Multinomial Logit\", \"Poisson\", \"Quasi-Poisson\", \"NBD\"], \n name: \"formType\", default_value: \"Linear\"})\nvar formMissing = form.comboBox({label: \"Missing data\", \n alternatives: [\"Error if missing data\", \"Exclude cases with missing data\", \"Use partial data (pairwise correlations)\", \"Multiple imputation\"], \n name: \"formMissing\", default_value: \"Exclude cases with missing data\"})\nif(formMissing.getValue() == \"Multiple imputation\")\n form.dropBox({label: \"Auxiliary variables\",\n types:[\"Variable: Numeric, Date, Money, Categorical, OrderedCategorical\"], \n name: \"formAuxiliaryVariables\", \n required: false, \n multi:true})\nvar formOutput = form.comboBox({label: \"Output\", \n alternatives: [\"Summary\", \"R\", \"ANOVA\"], \n name: \"formOutput\", default_value: \"ANOVA\"})\nform.checkBox({label: \"Variable names\", name: \"formNames\", default_value: false})\nif((formType.getValue() == \"Linear\") && formMissing.getValue() != \"Use partial data (pairwise correlations)\" && formMissing.getValue() != \"Multiple imputation\")\n form.checkBox({label: \"Robust standard errors\", name: \"formRobustSE\", default_value: false})\nform.setHeading((formOutput.getValue() == \"ANOVA\" ? \"ANOVA\" : \"Generalized Linear Model\" ) +\": \" + formType.getValue());","JSError":null,"JSErrorDetails":null,"ControlDefinitionErrors":null,"InputValidationErrors":null,"Controls":[{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":null,"Page":null,"Group":null,"Type":"Heading","Label":null,"LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":"ANOVA: Linear","Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formOutcomeVariable","Page":null,"Group":null,"Type":"DropBox","Label":"Outcome","LabelEmphasised":false,"Value":"3a7c7c03-7d8c-44fe-ba8f-13e4d5065280","Allowed":null,"Multi":false,"Prompt":"Select an input which is of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","ErrorMessage":"Outcome: Outcome accepts only one input which is of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","Invalid":null,"Required":true,"AllowedTypes":["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"],"OwnerRItemGuid":"6fd1ecf5-0eac-431c-b7b0-293e8fe601f0","MinInputs":1,"MaxInputs":1,"Height":1,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formPredictorVariables","Page":null,"Group":null,"Type":"DropBox","Label":"Predictor(s)","LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":true,"Prompt":"Select at least one input which is of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","ErrorMessage":"Predictor(s): Predictor(s) accepts only inputs which are of type Variable (Numeric, Date, Money, Categorical or Orderedcategorical).","Invalid":null,"Required":true,"AllowedTypes":["Variable: Numeric, Date, Money, Categorical, OrderedCategorical"],"OwnerRItemGuid":"6fd1ecf5-0eac-431c-b7b0-293e8fe601f0","MinInputs":1,"MaxInputs":2147483647,"Height":4,"Duplicates":false,"Values":["fb081ccc-31a6-46ad-9d4b-ea9941efab22","0b084fed-e998-42cb-83dc-a7c01349ef8f","1dac30f5-e363-4eab-9e42-d0d4427d70ae"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formType","Page":null,"Group":null,"Type":"ComboBox","Label":"Type","LabelEmphasised":false,"Value":"Linear","Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Linear","Binary Logit","Ordered Logit","Multinomial Logit","Poisson","Quasi-Poisson","NBD"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formMissing","Page":null,"Group":null,"Type":"ComboBox","Label":"Missing data","LabelEmphasised":false,"Value":"Exclude cases with missing data","Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Error if missing data","Exclude cases with missing data","Use partial data (pairwise correlations)","Multiple imputation"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formOutput","Page":null,"Group":null,"Type":"ComboBox","Label":"Output","LabelEmphasised":false,"Value":"ANOVA","Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Summary","R","ANOVA"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formNames","Page":null,"Group":null,"Type":"CheckBox","Label":"Variable names","LabelEmphasised":false,"Value":false,"Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":"left","Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formRobustSE","Page":null,"Group":null,"Type":"CheckBox","Label":"Robust standard errors","LabelEmphasised":false,"Value":false,"Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":"left","Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":null,"Page":null,"Group":null,"Type":null,"Label":null,"LabelEmphasised":false,"Value":null,"Allowed":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"OwnerRItemGuid":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":true}]},"calculating":"Idle","showDebug":false,"layout":"OutputOnly","vSplit":0.25,"hSplit":0.45,"updateWarnings":true,"updateMode":"Manual","warnSlow":false,"Options":{"debugconsole":false,"codeposition":"OutputOnly","splitH":0.45,"splitV":0.25,"update warnings":true,"updating":"Manual","warn slow":false}}