{"appearance":{"background":"white","padding":14,"font":{"family":"Courier New","size":10.0,"bold":false,"italic":false,"underline":false,"strikeout":false,"color":"rgb(0,72,168)"},"border":{"on":true,"size":0.0,"style":"solid","color":"#666"},"text":{"wrap":false,"hAlign":"left","vAlign":"top"}},"outputType":"WIDGET","widgetState":null,"outputs":{"console":"<pre class='debug-source'>&gt;library(flipFormat)\n</pre>\n<pre class='debug-source'>&gt;library(flipTransformations)\n</pre>\n<pre class='debug-source'>&gt;library(flipStatistics)\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;dat &lt;- AsNumeric(data.frame(Q9_A, Q9_B, Q9_C, Q9_D, Q9_E, Q9_F), binary = binaryCat, remove.first = FALSE)\n</pre>\n<pre class='debug-warning'>Data has been automatically been converted to being numeric. Values are assigned in the order of the categories: 1, 2, 3... To use alternative numeric values you should instead transform the data prior including it in this analysis (e.g., by changing its structure): Q9. Cola drinking frequency: Coca Cola (Q9_A), Q9. Cola drinking frequency: Diet Coke (Q9_B), Q9. Cola drinking frequency: Coke Zero (Q9_C), Q9. Cola drinking frequency: Pepsi (Q9_D), Q9. Cola drinking frequency: Pepsi Light (Q9_E), Q9. Cola drinking frequency: Pepsi Max (Q9_F)</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;if (formCompare == &quot;Cases&quot;) {\n dat &lt;- dat[QFilter, , drop = FALSE]\n if (nrow(dat) &gt; 100)\n stop(&quot;There are more than 100 cases to compare. Apply a filter to reduce the number of cases.&quot;)\n if (!is.null(QCalibratedWeight))\n warning(&quot;Weights applied to this item have been ignored as they are not applicable when cases are compared.&quot;)\n if (length(formCaseLabels) &gt; 1)\n rownames(dat) &lt;- formCaseLabels[QFilter]\n} else {\n if (ncol(dat) &lt; 2)\n stop(&quot;There needs to be two or more variables to compare, with the currently selected options.&quot;)\n \n # Changing names to labels.\n if (!formNames)\n for (i in 1:ncol(dat))\n {\n label &lt;- attr(dat[, i], &quot;label&quot;)\n if (!is.null(label))\n names(dat)[i] &lt;- label\n }\n dat &lt;- dat[QFilter, , drop = FALSE]\n \n # Weight\n wgt &lt;- if (is.null(QCalibratedWeight)) {\n rep(1, nrow(dat))\n } else {\n QCalibratedWeight\n }\n wgt &lt;- wgt[QFilter]\n}\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;# Filtering out missing values.\n</pre>\n<pre class='debug-source'>&gt;ind &lt;- complete.cases(dat)\n</pre>\n<pre class='debug-source'>&gt;dat.matrix &lt;- data.matrix(dat[ind, , drop = FALSE])\n</pre>\n<pre class='debug-source'>&gt;if (formCompare != &quot;Cases&quot;)\n wgt &lt;- wgt[ind]\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;# Standardization\n</pre>\n<pre class='debug-source'>&gt;want.transposed &lt;- xor(formCompare == &quot;Cases&quot;, formMeasure == &quot;Dissimilarities&quot;)\n</pre>\n<pre class='debug-source'>&gt;dat.matrix &lt;- if (want.transposed) {\n if (formStandardize == &quot;None&quot;) {\n t(dat.matrix)\n } else if (formStandardizeBy == &quot;Case&quot;) {\n StandardizeData(t(dat.matrix), formStandardize, no.variation = &quot;ignore&quot;, mean.zero = &quot;ignore&quot;)\n } else {\n t(StandardizeData(dat.matrix, formStandardize))\n }\n} else {\n if (formStandardize == &quot;None&quot;) {\n dat.matrix\n } else if (formStandardizeBy == &quot;Case&quot;) {\n t(StandardizeData(t(dat.matrix), formStandardize, no.variation = &quot;ignore&quot;, mean.zero = &quot;ignore&quot;))\n } else {\n StandardizeData(dat.matrix, formStandardize)\n }\n}\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;# Compute measures\n</pre>\n<pre class='debug-source'>&gt;distance.matrix &lt;- if (formMeasure == &quot;Dissimilarities&quot;) {\n # Weighting the data (note that this method should not be applied to other problems, as it is unique to this one).\n if (formCompare != &quot;Cases&quot;)\n dat.matrix &lt;- sweep(dat.matrix, 2, wgt, &quot;*&quot;)\n p &lt;- if (formDistance == &quot;Minkowski&quot;) formMinkowski else 2\n method &lt;- if (formDistance == &quot;Squared Euclidean&quot;) &quot;euclidean&quot; else tolower(formDistance)\n mat &lt;- as.matrix(dist(dat.matrix, method = method, p = p, diag = TRUE, upper = TRUE))\n if (formDistance == &quot;Squared Euclidean&quot;)\n mat &lt;- mat * mat\n mat\n} else if (formSimilarity == &quot;Correlation&quot;) {\n if (formCompare == &quot;Cases&quot;)\n cor(dat.matrix)\n else\n weights::wtd.cors(dat.matrix, weight = wgt)\n} else if (formSimilarity == &quot;Cosine&quot;) {\n if (formCompare == &quot;Cases&quot;)\n CosineSimilarities(dat.matrix)\n else\n CosineSimilarities(dat.matrix, weight = wgt)\n} else\n stop(paste(&quot;Unhandled similarity measure:&quot;, formSimilarity))\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;# Measure transformations\n</pre>\n<pre class='debug-source'>&gt;if (formMeasureTransform == &quot;Absolute values&quot;) {\n distance.matrix &lt;- abs(distance.matrix)\n} else if (formMeasureTransform == &quot;Reverse sign&quot;) {\n distance.matrix &lt;- -distance.matrix\n} else if (formMeasureTransform == &quot;Range [0,1]&quot;) {\n tri &lt;- distance.matrix[lower.tri(distance.matrix)]\n min.val &lt;- min(tri, na.rm = TRUE)\n max.val &lt;- max(tri, na.rm = TRUE)\n if (max.val &gt; min.val) {\n diagonal &lt;- diag(distance.matrix)\n distance.matrix &lt;- (distance.matrix - min.val) / (max.val - min.val)\n diag(distance.matrix) &lt;- diagonal\n } else\n stop(&quot;The measures are constant and cannot be transformed to the range [0,1].&quot;)\n}\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;n &lt;- ncol(distance.matrix)\n</pre>\n<pre class='debug-source'>&gt;cellnote &lt;- matrix(&quot;&quot;, n, n)\n</pre>\n<pre class='debug-source'>&gt;for (i in 1:n)\n for (j in 1:n)\n cellnote[i, j] &lt;- FormatWithDecimals(distance.matrix[i, j], 2)\n</pre>\n<pre class='debug-source'>&gt;show.cellnote.in.cell &lt;- n &lt;= 15\n</pre>\n<pre class='debug-source'>&gt;hide.axes.labels &lt;- n &gt; 20\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;if (formMeasure == &quot;Similarities&quot;) {\n # Values may be slightly larger than 1 due to numerical errors\n distance.matrix[distance.matrix &gt; 1] &lt;- 1\n distance.matrix[distance.matrix &lt; -1] &lt;- -1\n colours &lt;- &quot;RdBu&quot;\n colour.range &lt;- c(-1, 1)\n} else {\n colours &lt;- &quot;Blues&quot;\n colour.range &lt;- NULL\n}\n</pre>\n<pre class='debug-source'>&gt;\n</pre>\n<pre class='debug-source'>&gt;print.Distance &lt;- function(x, ...)\n{\n rhtmlHeatmap::Heatmap(x, Rowv = NULL, Colv = NULL,\n cellnote = cellnote, colors = colours,\n show_cellnote_in_cell = show.cellnote.in.cell,\n xaxis_location = &quot;bottom&quot;, yaxis_location = &quot;left&quot;,\n lower_triangle = TRUE, cexRow = 0.79,\n xaxis_hidden = hide.axes.labels,\n yaxis_hidden = hide.axes.labels,\n color_range = colour.range)\n}\n</pre>\n<pre class='debug-source'>&gt;class(distance.matrix) &lt;- &quot;Distance&quot;\n</pre>\n<pre class='debug-source'>&gt;distance.matrix\n</pre>\r\n<div class=\"debug-summarystatistics\">\r\n<table>\r\n<tr><th>Total time:</th><td>2.18s</td></tr>\r\n<tr><th>Time on R server:</th><td title=\"rApacheServe 1.79s (pre 0.00s, post 0.00s) httpget_code() setup for eval 0.01s session$eval 1.77s (pre 0.00s, post 0.19s) unexplained 0.02s apparmor forking (pre 0.03s, post 0.00s)\">1.79s</td></tr>\r\n<tr><th>Time evaluating code:</th><td>1.54s</td></tr>\r\n<tr><th>Bytes sent:</th><td>11,769</td></tr>\r\n<tr><th>Bytes received:</th><td>19,325</td></tr>\r\n</table>\r\n</div>","warning":"Data has been automatically been converted to being numeric. Values are assigned in the order of the categories: 1, 2, 3... To use alternative numeric values you should instead transform the data prior including it in this analysis (e.g., by changing its structure): Q9. Cola drinking frequency: Coca Cola (Q9_A), Q9. Cola drinking frequency: Diet Coke (Q9_B), Q9. Cola drinking frequency: Coke Zero (Q9_C), Q9. Cola drinking frequency: Pepsi (Q9_D), Q9. Cola drinking frequency: Pepsi Light (Q9_E), Q9. Cola drinking frequency: Pepsi Max (Q9_F)","htmlwidgets":"<div id=\"htmlwidget_container\">\n <div id=\"htmlwidget-3a3c7dc3864bac71d4ba\" style=\"width:960px;height:500px;\" class=\"rhtmlHeatmap html-widget\"></div>\n</div>\n<script type=\"application/json\" data-for=\"htmlwidget-3a3c7dc3864bac71d4ba\">{\"x\":{\"rows\":null,\"cols\":null,\"matrix\":{\"data\":[\"0.00\",\"78.97\",\"76.18\",\"58.15\",\"81.93\",\"76.85\",\"78.97\",\"0.00\",\"56.02\",\"60.16\",\"50.02\",\"58.09\",\"76.18\",\"56.02\",\"0.00\",\"64.18\",\"64.73\",\"59.39\",\"58.15\",\"60.16\",\"64.18\",\"0.00\",\"48.20\",\"49.92\",\"81.93\",\"50.02\",\"64.73\",\"48.20\",\"0.00\",\"52.53\",\"76.85\",\"58.09\",\"59.39\",\"49.92\",\"52.53\",\"0.00\"],\"dim\":[6,6],\"rows\":[\"Coca Cola\",\"Diet Coke\",\"Coke Zero\",\"Pepsi\",\"Pepsi Light\",\"Pepsi Max\"],\"cols\":[\"Coca Cola\",\"Diet Coke\",\"Coke Zero\",\"Pepsi\",\"Pepsi Light\",\"Pepsi Max\"],\"cells_to_hide\":[0,1,1,1,1,1,0,0,1,1,1,1,0,0,0,1,1,1,0,0,0,0,1,1,0,0,0,0,0,1,0,0,0,0,0,0],\"cellnote_in_cell\":[\"0.00\",\"78.97\",\"76.18\",\"58.15\",\"81.93\",\"76.85\",\"78.97\",\"0.00\",\"56.02\",\"60.16\",\"50.02\",\"58.09\",\"76.18\",\"56.02\",\"0.00\",\"64.18\",\"64.73\",\"59.39\",\"58.15\",\"60.16\",\"64.18\",\"0.00\",\"48.20\",\"49.92\",\"81.93\",\"50.02\",\"64.73\",\"48.20\",\"0.00\",\"52.53\",\"76.85\",\"58.09\",\"59.39\",\"49.92\",\"52.53\",\"0.00\"]},\"image\":\"\",\"theme\":null,\"options\":{\"xaxis_height\":80,\"yaxis_width\":120,\"xaxis_font_size\":11.06,\"yaxis_font_size\":11,\"xaxis_location\":\"bottom\",\"yaxis_location\":\"left\",\"xaxis_title\":null,\"yaxis_title\":null,\"xaxis_title_font_size\":14,\"yaxis_title_font_size\":14,\"xaxis_hidden\":false,\"yaxis_hidden\":false,\"xaxis_font_family\":\"sans-serif\",\"yaxis_font_family\":\"sans-serif\",\"title\":null,\"title_font_size\":24,\"title_font_family\":\"sans-serif\",\"title_font_color\":\"#000000\",\"subtitle\":null,\"subtitle_font_size\":18,\"subtitle_font_family\":\"sans-serif\",\"subtitle_font_color\":\"#000000\",\"footer\":null,\"footer_font_size\":11,\"footer_font_family\":\"sans-serif\",\"footer_font_color\":\"#000000\",\"tip_font_size\":11,\"tip_font_family\":\"sans-serif\",\"brush_color\":\"#0000FF\",\"show_grid\":true,\"legend_font_size\":11,\"x_is_factor\":false,\"legend_colors\":[\"#08306B\",\"#083573\",\"#093A7B\",\"#094083\",\"#09458B\",\"#084B93\",\"#08509B\",\"#0D55A0\",\"#125BA4\",\"#1660A8\",\"#1A65AC\",\"#1D6AB0\",\"#2070B4\",\"#2675B7\",\"#2C7ABA\",\"#3280BD\",\"#3785BF\",\"#3C8AC2\",\"#4090C5\",\"#4795C8\",\"#4E99CA\",\"#559ECD\",\"#5BA2CF\",\"#62A7D2\",\"#68ACD5\",\"#70B0D7\",\"#78B5D9\",\"#81B9DB\",\"#89BEDC\",\"#91C2DE\",\"#99C7E0\",\"#A1CBE2\",\"#A7CEE4\",\"#AED1E6\",\"#B4D3E9\",\"#BBD6EB\",\"#C1D9ED\",\"#C7DCEF\",\"#CBDEF1\",\"#CFE1F2\",\"#D3E3F3\",\"#D7E6F5\",\"#DBE9F6\",\"#DFEBF7\",\"#E3EEF8\",\"#E7F1FA\",\"#EBF3FB\",\"#EFF6FC\",\"#F3F8FE\",\"#F7FBFF\"],\"legend_range\":[0,81.9328993750374],\"legend_width\":60,\"legend_digits\":1,\"shownote_in_cell\":true,\"cell_font_size\":11,\"left_columns\":null,\"left_columns_font_size\":11,\"right_columns\":null,\"right_columns_font_size\":11,\"extra_tooltip_info\":null,\"anim_duration\":500,\"yclust_width\":0,\"xclust_height\":0}},\"evals\":[],\"jsHooks\":[]}</script>\n<script type=\"application/htmlwidget-sizing\" data-for=\"htmlwidget-3a3c7dc3864bac71d4ba\">{\"viewer\":{\"width\":450,\"height\":350,\"padding\":5,\"fill\":true},\"browser\":{\"width\":960,\"height\":500,\"padding\":5,\"fill\":true}}</script>","htmlwidget-head":"{\"stylesheets\":[\"https://rserverhtmlwidgetasset.azureedge.net/heatmapcore-0b0c3c977a3de18d1ff639e311c1249c.css\"],\"javascript\":[\"https://rserverhtmlwidgetasset.azureedge.net/htmlwidgets-d2ab507a7e7d3e3d7c2178bda9d4c762.js\",\"https://rserverhtmlwidgetasset.azureedge.net/d3.min-fe2151217025e25f119e69ca126390f4.js\",\"https://rserverhtmlwidgetasset.azureedge.net/heatmapcore-e2f210a7754f3fcbeddce04d2f73b348.js\",\"https://rserverhtmlwidgetasset.azureedge.net/index-1868b419773570135e12157d84680fcc.js\",\"https://rserverhtmlwidgetasset.azureedge.net/rhtmlHeatmap-fce4de827a4fdb1bd7d1317d03394668.js\"],\"attachments\":[]}","message":"","table":"{\"Dimensions\":[{\"IsStatistic\":true,\"Elements\":[{\"IsNumber\":true,\"IsBoolean\":false,\"IsDateTime\":false,\"IsPercent\":false,\"HasDecimalPlaces\":true,\"DecimalPlaces\":1,\"MoneySymbol\":null,\"IsCategorical\":false,\"Categories\":[],\"SeriesType\":0,\"Id\":\"StatisticsElement0\",\"Name\":\"Coca Cola\",\"WrappedName\":[\"Coca Cola\"],\"IsText\":false},{\"IsNumber\":true,\"IsBoolean\":false,\"IsDateTime\":false,\"IsPercent\":false,\"HasDecimalPlaces\":true,\"DecimalPlaces\":1,\"MoneySymbol\":null,\"IsCategorical\":false,\"Categories\":[],\"SeriesType\":0,\"Id\":\"StatisticsElement1\",\"Name\":\"Diet Coke\",\"WrappedName\":[\"Diet Coke\"],\"IsText\":false},{\"IsNumber\":true,\"IsBoolean\":false,\"IsDateTime\":false,\"IsPercent\":false,\"HasDecimalPlaces\":true,\"DecimalPlaces\":1,\"MoneySymbol\":null,\"IsCategorical\":false,\"Categories\":[],\"SeriesType\":0,\"Id\":\"StatisticsElement2\",\"Name\":\"Coke Zero\",\"WrappedName\":[\"Coke Zero\"],\"IsText\":false},{\"IsNumber\":true,\"IsBoolean\":false,\"IsDateTime\":false,\"IsPercent\":false,\"HasDecimalPlaces\":true,\"DecimalPlaces\":1,\"MoneySymbol\":null,\"IsCategorical\":false,\"Categories\":[],\"SeriesType\":0,\"Id\":\"StatisticsElement3\",\"Name\":\"Pepsi\",\"WrappedName\":[\"Pepsi\"],\"IsText\":false},{\"IsNumber\":true,\"IsBoolean\":false,\"IsDateTime\":false,\"IsPercent\":false,\"HasDecimalPlaces\":true,\"DecimalPlaces\":1,\"MoneySymbol\":null,\"IsCategorical\":false,\"Categories\":[],\"SeriesType\":0,\"Id\":\"StatisticsElement4\",\"Name\":\"Pepsi Light\",\"WrappedName\":[\"Pepsi\",\"Light\"],\"IsText\":false},{\"IsNumber\":true,\"IsBoolean\":false,\"IsDateTime\":false,\"IsPercent\":false,\"HasDecimalPlaces\":true,\"DecimalPlaces\":1,\"MoneySymbol\":null,\"IsCategorical\":false,\"Categories\":[],\"SeriesType\":0,\"Id\":\"StatisticsElement5\",\"Name\":\"Pepsi Max\",\"WrappedName\":[\"Pepsi Max\"],\"IsText\":false}],\"Id\":\"StatisticsDimensionID\",\"Name\":null,\"WrappedName\":null,\"Tiers\":[],\"Count\":6},{\"IsStatistic\":false,\"Elements\":[{\"Id\":\"RowDimensionElement0\",\"Name\":\"Coca Cola\",\"WrappedName\":[\"Coca Cola\"]},{\"Id\":\"RowDimensionElement1\",\"Name\":\"Diet Coke\",\"WrappedName\":[\"Diet Coke\"]},{\"Id\":\"RowDimensionElement2\",\"Name\":\"Coke Zero\",\"WrappedName\":[\"Coke Zero\"]},{\"Id\":\"RowDimensionElement3\",\"Name\":\"Pepsi\",\"WrappedName\":[\"Pepsi\"]},{\"Id\":\"RowDimensionElement4\",\"Name\":\"Pepsi Light\",\"WrappedName\":[\"Pepsi Light\"]},{\"Id\":\"RowDimensionElement5\",\"Name\":\"Pepsi Max\",\"WrappedName\":[\"Pepsi Max\"]}],\"Id\":\"RowCategoricalDimension\",\"Name\":null,\"WrappedName\":null,\"Tiers\":[],\"Count\":6}],\"DataPoints\":[[{\"Value\":0.0,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":78.9746794865291,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":76.1774244773345,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":58.154965394194846,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":81.93289937503738,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":76.8505042273634,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null}],[{\"Value\":78.9746794865291,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":0.0,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":56.017854296643669,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":60.158124970780129,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":50.0199960015992,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":58.094750193111253,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null}],[{\"Value\":76.1774244773345,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":56.017854296643669,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":0.0,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":64.179435958880163,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":64.730209330729039,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":59.388551085204966,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null}],[{\"Value\":58.154965394194846,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":60.158124970780129,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":64.179435958880163,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":0.0,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":48.19751030914356,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":49.919935897394737,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null}],[{\"Value\":81.93289937503738,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":50.0199960015992,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":64.730209330729039,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":48.19751030914356,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":0.0,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":52.526183946675587,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null}],[{\"Value\":76.8505042273634,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":58.094750193111253,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":59.388551085204966,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":49.919935897394737,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":52.526183946675587,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null},{\"Value\":0.0,\"WrappedText\":null,\"IsBlank\":null,\"Significance\":null,\"ExtraText\":null}]],\"Settings\":{\"CellDimensionId\":null,\"RowDimensionsIds\":[\"RowCategoricalDimension\"],\"ColumnDimensionsIds\":[\"StatisticsDimensionID\"],\"ColumnHeadersHidden\":false,\"Title\":null,\"Footnote\":null,\"IsRowHeadersSortable\":false,\"IsColumnHeadersSortable\":true,\"HeaderSorts\":[],\"IsRowHeadersFilterable\":false,\"IsColumnHeadersFilterable\":true,\"HeaderFilters\":[],\"PaginationParameters\":null,\"TableStyleCssClass\":\"style-97ba0187-37c0-47a1-a4ad-31b0f5281e77-1-_-_\",\"LiveTableFormat\":{},\"AvailableWidth\":576,\"AvailableHeight\":511,\"TableWidth\":null}}","visible":"yes"},"secondsTaken":2.1789490000000002,"updated":"2017-05-18T07:01:50.2399712Z","lastUpdatedMessage":null,"executedCode":"library(flipFormat)\nlibrary(flipTransformations)\nlibrary(flipStatistics)\n\ndat <- AsNumeric(data.frame(Q9_A, Q9_B, Q9_C, Q9_D, Q9_E, Q9_F), binary = binaryCat, remove.first = FALSE)\n\nif (formCompare == \"Cases\") {\n dat <- dat[QFilter, , drop = FALSE]\n if (nrow(dat) > 100)\n stop(\"There are more than 100 cases to compare. Apply a filter to reduce the number of cases.\")\n if (!is.null(QCalibratedWeight))\n warning(\"Weights applied to this item have been ignored as they are not applicable when cases are compared.\")\n if (length(formCaseLabels) > 1)\n rownames(dat) <- formCaseLabels[QFilter]\n} else {\n if (ncol(dat) < 2)\n stop(\"There needs to be two or more variables to compare, with the currently selected options.\")\n \n # Changing names to labels.\n if (!formNames)\n for (i in 1:ncol(dat))\n {\n label <- attr(dat[, i], \"label\")\n if (!is.null(label))\n names(dat)[i] <- label\n }\n dat <- dat[QFilter, , drop = FALSE]\n \n # Weight\n wgt <- if (is.null(QCalibratedWeight)) {\n rep(1, nrow(dat))\n } else {\n QCalibratedWeight\n }\n wgt <- wgt[QFilter]\n}\n\n# Filtering out missing values.\nind <- complete.cases(dat)\ndat.matrix <- data.matrix(dat[ind, , drop = FALSE])\nif (formCompare != \"Cases\")\n wgt <- wgt[ind]\n\n# Standardization\nwant.transposed <- xor(formCompare == \"Cases\", formMeasure == \"Dissimilarities\")\ndat.matrix <- if (want.transposed) {\n if (formStandardize == \"None\") {\n t(dat.matrix)\n } else if (formStandardizeBy == \"Case\") {\n StandardizeData(t(dat.matrix), formStandardize, no.variation = \"ignore\", mean.zero = \"ignore\")\n } else {\n t(StandardizeData(dat.matrix, formStandardize))\n }\n} else {\n if (formStandardize == \"None\") {\n dat.matrix\n } else if (formStandardizeBy == \"Case\") {\n t(StandardizeData(t(dat.matrix), formStandardize, no.variation = \"ignore\", mean.zero = \"ignore\"))\n } else {\n StandardizeData(dat.matrix, formStandardize)\n }\n}\n\n# Compute measures\ndistance.matrix <- if (formMeasure == \"Dissimilarities\") {\n # Weighting the data (note that this method should not be applied to other problems, as it is unique to this one).\n if (formCompare != \"Cases\")\n dat.matrix <- sweep(dat.matrix, 2, wgt, \"*\")\n p <- if (formDistance == \"Minkowski\") formMinkowski else 2\n method <- if (formDistance == \"Squared Euclidean\") \"euclidean\" else tolower(formDistance)\n mat <- as.matrix(dist(dat.matrix, method = method, p = p, diag = TRUE, upper = TRUE))\n if (formDistance == \"Squared Euclidean\")\n mat <- mat * mat\n mat\n} else if (formSimilarity == \"Correlation\") {\n if (formCompare == \"Cases\")\n cor(dat.matrix)\n else\n weights::wtd.cors(dat.matrix, weight = wgt)\n} else if (formSimilarity == \"Cosine\") {\n if (formCompare == \"Cases\")\n CosineSimilarities(dat.matrix)\n else\n CosineSimilarities(dat.matrix, weight = wgt)\n} else\n stop(paste(\"Unhandled similarity measure:\", formSimilarity))\n\n# Measure transformations\nif (formMeasureTransform == \"Absolute values\") {\n distance.matrix <- abs(distance.matrix)\n} else if (formMeasureTransform == \"Reverse sign\") {\n distance.matrix <- -distance.matrix\n} else if (formMeasureTransform == \"Range [0,1]\") {\n tri <- distance.matrix[lower.tri(distance.matrix)]\n min.val <- min(tri, na.rm = TRUE)\n max.val <- max(tri, na.rm = TRUE)\n if (max.val > min.val) {\n diagonal <- diag(distance.matrix)\n distance.matrix <- (distance.matrix - min.val) / (max.val - min.val)\n diag(distance.matrix) <- diagonal\n } else\n stop(\"The measures are constant and cannot be transformed to the range [0,1].\")\n}\n\nn <- ncol(distance.matrix)\ncellnote <- matrix(\"\", n, n)\nfor (i in 1:n)\n for (j in 1:n)\n cellnote[i, j] <- FormatWithDecimals(distance.matrix[i, j], 2)\nshow.cellnote.in.cell <- n <= 15\nhide.axes.labels <- n > 20\n\nif (formMeasure == \"Similarities\") {\n # Values may be slightly larger than 1 due to numerical errors\n distance.matrix[distance.matrix > 1] <- 1\n distance.matrix[distance.matrix < -1] <- -1\n colours <- \"RdBu\"\n colour.range <- c(-1, 1)\n} else {\n colours <- \"Blues\"\n colour.range <- NULL\n}\n\nprint.Distance <- function(x, ...)\n{\n rhtmlHeatmap::Heatmap(x, Rowv = NULL, Colv = NULL,\n cellnote = cellnote, colors = colours,\n show_cellnote_in_cell = show.cellnote.in.cell,\n xaxis_location = \"bottom\", yaxis_location = \"left\",\n lower_triangle = TRUE, cexRow = 0.79,\n xaxis_hidden = hide.axes.labels,\n yaxis_hidden = hide.axes.labels,\n color_range = colour.range)\n}\nclass(distance.matrix) <- \"Distance\"\ndistance.matrix","lastSavedCode":"library(flipFormat)\nlibrary(flipTransformations)\nlibrary(flipStatistics)\n\ndat <- AsNumeric(data.frame(Q9_A, Q9_B, Q9_C, Q9_D, Q9_E, Q9_F), binary = binaryCat, remove.first = FALSE)\n\nif (formCompare == \"Cases\") {\n dat <- dat[QFilter, , drop = FALSE]\n if (nrow(dat) > 100)\n stop(\"There are more than 100 cases to compare. Apply a filter to reduce the number of cases.\")\n if (!is.null(QCalibratedWeight))\n warning(\"Weights applied to this item have been ignored as they are not applicable when cases are compared.\")\n if (length(formCaseLabels) > 1)\n rownames(dat) <- formCaseLabels[QFilter]\n} else {\n if (ncol(dat) < 2)\n stop(\"There needs to be two or more variables to compare, with the currently selected options.\")\n \n # Changing names to labels.\n if (!formNames)\n for (i in 1:ncol(dat))\n {\n label <- attr(dat[, i], \"label\")\n if (!is.null(label))\n names(dat)[i] <- label\n }\n dat <- dat[QFilter, , drop = FALSE]\n \n # Weight\n wgt <- if (is.null(QCalibratedWeight)) {\n rep(1, nrow(dat))\n } else {\n QCalibratedWeight\n }\n wgt <- wgt[QFilter]\n}\n\n# Filtering out missing values.\nind <- complete.cases(dat)\ndat.matrix <- data.matrix(dat[ind, , drop = FALSE])\nif (formCompare != \"Cases\")\n wgt <- wgt[ind]\n\n# Standardization\nwant.transposed <- xor(formCompare == \"Cases\", formMeasure == \"Dissimilarities\")\ndat.matrix <- if (want.transposed) {\n if (formStandardize == \"None\") {\n t(dat.matrix)\n } else if (formStandardizeBy == \"Case\") {\n StandardizeData(t(dat.matrix), formStandardize, no.variation = \"ignore\", mean.zero = \"ignore\")\n } else {\n t(StandardizeData(dat.matrix, formStandardize))\n }\n} else {\n if (formStandardize == \"None\") {\n dat.matrix\n } else if (formStandardizeBy == \"Case\") {\n t(StandardizeData(t(dat.matrix), formStandardize, no.variation = \"ignore\", mean.zero = \"ignore\"))\n } else {\n StandardizeData(dat.matrix, formStandardize)\n }\n}\n\n# Compute measures\ndistance.matrix <- if (formMeasure == \"Dissimilarities\") {\n # Weighting the data (note that this method should not be applied to other problems, as it is unique to this one).\n if (formCompare != \"Cases\")\n dat.matrix <- sweep(dat.matrix, 2, wgt, \"*\")\n p <- if (formDistance == \"Minkowski\") formMinkowski else 2\n method <- if (formDistance == \"Squared Euclidean\") \"euclidean\" else tolower(formDistance)\n mat <- as.matrix(dist(dat.matrix, method = method, p = p, diag = TRUE, upper = TRUE))\n if (formDistance == \"Squared Euclidean\")\n mat <- mat * mat\n mat\n} else if (formSimilarity == \"Correlation\") {\n if (formCompare == \"Cases\")\n cor(dat.matrix)\n else\n weights::wtd.cors(dat.matrix, weight = wgt)\n} else if (formSimilarity == \"Cosine\") {\n if (formCompare == \"Cases\")\n CosineSimilarities(dat.matrix)\n else\n CosineSimilarities(dat.matrix, weight = wgt)\n} else\n stop(paste(\"Unhandled similarity measure:\", formSimilarity))\n\n# Measure transformations\nif (formMeasureTransform == \"Absolute values\") {\n distance.matrix <- abs(distance.matrix)\n} else if (formMeasureTransform == \"Reverse sign\") {\n distance.matrix <- -distance.matrix\n} else if (formMeasureTransform == \"Range [0,1]\") {\n tri <- distance.matrix[lower.tri(distance.matrix)]\n min.val <- min(tri, na.rm = TRUE)\n max.val <- max(tri, na.rm = TRUE)\n if (max.val > min.val) {\n diagonal <- diag(distance.matrix)\n distance.matrix <- (distance.matrix - min.val) / (max.val - min.val)\n diag(distance.matrix) <- diagonal\n } else\n stop(\"The measures are constant and cannot be transformed to the range [0,1].\")\n}\n\nn <- ncol(distance.matrix)\ncellnote <- matrix(\"\", n, n)\nfor (i in 1:n)\n for (j in 1:n)\n cellnote[i, j] <- FormatWithDecimals(distance.matrix[i, j], 2)\nshow.cellnote.in.cell <- n <= 15\nhide.axes.labels <- n > 20\n\nif (formMeasure == \"Similarities\") {\n # Values may be slightly larger than 1 due to numerical errors\n distance.matrix[distance.matrix > 1] <- 1\n distance.matrix[distance.matrix < -1] <- -1\n colours <- \"RdBu\"\n colour.range <- c(-1, 1)\n} else {\n colours <- \"Blues\"\n colour.range <- NULL\n}\n\nprint.Distance <- function(x, ...)\n{\n rhtmlHeatmap::Heatmap(x, Rowv = NULL, Colv = NULL,\n cellnote = cellnote, colors = colours,\n show_cellnote_in_cell = show.cellnote.in.cell,\n xaxis_location = \"bottom\", yaxis_location = \"left\",\n lower_triangle = TRUE, cexRow = 0.79,\n xaxis_hidden = hide.axes.labels,\n yaxis_hidden = hide.axes.labels,\n color_range = colour.range)\n}\nclass(distance.matrix) <- \"Distance\"\ndistance.matrix","highlightedCodeSpans":[{"start":102,"length":4,"index":0},{"start":108,"length":4,"index":0},{"start":114,"length":4,"index":0},{"start":120,"length":4,"index":0},{"start":126,"length":4,"index":0},{"start":132,"length":4,"index":0},{"start":148,"length":9,"index":4},{"start":186,"length":11,"index":4},{"start":227,"length":7,"index":6},{"start":398,"length":17,"index":6},{"start":612,"length":7,"index":6},{"start":804,"length":9,"index":4},{"start":998,"length":7,"index":6},{"start":1064,"length":17,"index":6},{"start":1133,"length":17,"index":6},{"start":1172,"length":7,"index":6},{"start":1299,"length":11,"index":4},{"start":1385,"length":11,"index":4},{"start":1409,"length":11,"index":4},{"start":1488,"length":15,"index":4},{"start":1624,"length":15,"index":4},{"start":1739,"length":15,"index":4},{"start":1780,"length":15,"index":4},{"start":1915,"length":15,"index":4},{"start":2029,"length":15,"index":4},{"start":2097,"length":11,"index":4},{"start":2260,"length":11,"index":4},{"start":2350,"length":12,"index":4},{"start":2418,"length":12,"index":4},{"start":2480,"length":12,"index":4},{"start":2592,"length":12,"index":4},{"start":2716,"length":11,"index":4},{"start":2874,"length":11,"index":4},{"start":3102,"length":20,"index":4},{"start":3202,"length":20,"index":4},{"start":3295,"length":20,"index":4},{"start":3985,"length":11,"index":4}],"tableTransformations":"<TabularTransformer>\r\n <TabularTransform type=\"Truncation\" truncationHeaderType=\"Column\" />\r\n <TabularTransform />\r\n</TabularTransformer>","tabularFilteringOptions":null,"hasGuiControls":true,"guiControls":{"Code":"form.setHeading(\"Distances\");\nformCompare = form.comboBox({name: \"formCompare\",\n label: \"Compare\",\n alternatives: [\"Cases\", \"Variables\"],\n default_value: \"Variables\"});\nif (formCompare.getValue() == \"Cases\")\n form.dropBox({name: \"formCaseLabels\",\n label: \"Case labels\",\n types: [\"V:text\"],\n required: false});\nform.dropBox({name: \"formVariables\",\n label: \"Variables\",\n types: [\"V:numeric, categorical, ordered categorical\"],\n multi:true });\nif (formCompare.getValue() == \"Variables\")\n form.checkBox({label: \"Variable names\", name: \"formNames\", default_value: false});\nform.checkBox({ name: \"binaryCat\", label: \"Categorical as binary\", default_value: false });\nformMeasure = form.comboBox({name: \"formMeasure\",\n label: \"Measure\",\n alternatives: [\"Dissimilarities\", \"Similarities\"],\n default_value: \"Dissimilarities\"});\nif (formMeasure.getValue() == \"Dissimilarities\")\n{\n formDistance = form.comboBox({name: \"formDistance\",\n label: \"Distance measure\",\n alternatives: [\"Euclidean\", \"Squared Euclidean\", \"Maximum\", \"Manhattan\", \"Minkowski\"],\n default_value: \"Euclidean\"});\n if (formDistance.getValue() == \"Minkowski\")\n form.numericUpDown({name: \"formMinkowski\",\n label: \"Minkowski power (p)\",\n default_value: 2,\n minimum: 1,\n maximum: 999999});\n}\nelse\n form.comboBox({name: \"formSimilarity\",\n label: \"Similarity measure\",\n alternatives: [\"Correlation\", \"Cosine\"],\n default_value: \"Correlation\"});\n\nformStandardize = form.comboBox({name: \"formStandardize\",\n label: \"Data standardization\",\n alternatives: [\"None\", \"z-scores\", \"Range [-1,1]\", \"Range [0,1]\", \"Mean of 1\", \"Standard deviation of 1\"],\n default_value: \"None\"});\nif (formStandardize.getValue() != \"None\")\n form.comboBox({name: \"formStandardizeBy\",\n label: \"Standardize by\",\n alternatives: [\"Variable\", \"Case\"],\n default_value: \"Case\"});\nform.comboBox({name: \"formMeasureTransform\",\n label: \"Measure transformation\",\n alternatives: [\"None\", \"Absolute values\", \"Reverse sign\", \"Range [0,1]\"],\n default_value: \"None\"})","JSError":null,"JSErrorDetails":null,"ControlDefinitionErrors":null,"InputValidationErrors":null,"Controls":[{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":null,"Type":"Heading","Label":null,"Value":null,"Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":"Distances","Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formCompare","Type":"ComboBox","Label":"Compare","Value":"Variables","Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Cases","Variables"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formVariables","Type":"DropBox","Label":"Variables","Value":null,"Allowed":["cc30f630-d455-4254-ac86-be5d08c5b767","f26ecf02-fa68-4461-9d4f-cef005d5ca2d","59a75b7c-3ce8-45e2-8aa9-3ea8c4c8f8b8","0755e040-d7bb-45a3-b67f-f2917db37bb3","738e8535-cd80-47c8-9454-b7ce2c412a10","37671f54-7bb5-49dc-8782-2aef7cc8c352","ea63160e-2904-487e-b3ad-de4d6725118d","4720081e-b3b3-4afd-b293-950ac762c8e4","bbd8ccbd-de4a-4d52-a14f-dcb7087eef50","da0917d4-3632-4372-8348-a221decd55a5","8930ba11-8045-42f9-b2f5-ee492bf275b7","d5cc9e0a-7e64-44de-86c4-cff897134cba","c89a354d-b75d-4cc9-8b5f-c36c9babe76b","0a126779-f51a-4b7b-b29c-3c4c45925ee2","3d99a017-728c-4de7-b875-2aba5cb7123e","c8b447d2-e972-4623-b461-033ef5ac8575","bc53b093-d554-4d55-b509-45a7ff99ad38","253fe867-14cb-40df-9e37-d2f1531fa2e2","2d172edc-57ee-4684-84c4-fa6b1387f804","4439deb4-7a05-4d3a-8e0f-7f3bf18dbff9","670ce8a6-edb9-443c-a2b4-659c44b52cbc","98ac6b91-c828-4d28-8e32-739efbd362dd","4a7c6383-6598-4e93-9a15-0cc39765cc49","c763beab-f9ad-4159-b0ba-313bb4d75ce4","25e8b405-c957-4d06-b098-029d5da96656","3cec0314-6f1d-41ed-8a08-497da0dee7a3","447ce6e3-d69f-4e16-97dd-9fd263e83a1c","0810e063-8cae-4a87-a9f5-0a0495a34750","73c50adc-7da6-48ce-80a5-8f9aac2a57eb","f436299d-a850-4272-9472-e15b120a0da6","dbb20d5d-1ac0-4d5c-a7c7-2c0ac72f5b7c","1946129b-60e0-412f-b558-c94b77c2de6b","f0914fa2-5c1a-4959-81b7-c4bd974b7ad8","6223de5b-a9ae-44aa-a377-63c45ca6afe1","9e8752e9-2357-4b35-8a39-bfd6cc9cf2b9","bcd0032a-81fb-4ea4-9a6b-f297c2a6cfb5","dc86fe59-e2f9-42ae-86cc-0e348542605e","47ea56a0-4822-4715-a350-a065379a9e97","301cdb41-017c-4a8e-a3e4-557e6a150415","6ab1648a-cbc9-4b4d-8719-962088cd73c1","84b52009-a1bf-4cbe-94c2-7c3614ffd159","25f6af91-2144-4eca-ab82-d5f3dbab3cab","777e19fd-bf83-4635-b01f-cb8829486bf0","6e700f3f-cfe5-4027-98f9-9fc936a26bac","c585934e-1b2a-42dc-8616-4c148e868c94","e0f1f101-d578-4c7a-956f-20dc4a06441e","ede2f8c9-0b48-4ddb-9ee6-ec755dd1a423","4a9371e5-7fa1-49eb-bfe5-307750faa97f","1567fc6c-fb1b-4d54-921a-ed0af5621287","7fb11911-079f-41f0-89e8-2d486d00da68","dfb78aa0-1e27-4f34-b228-df3c1e4f064b","f000283a-6420-49e0-93e6-00e2dfa03856","875e4323-5e10-450f-aa48-f34517a5d3d0","9e5213e4-f275-44ef-9ba1-5e8370e31814","7eec5001-6928-431e-b28b-3f9219462fae","0a9a7625-a4b7-4386-93eb-2a66e634315c","8cd640ef-1117-4ab0-8099-bbba9a032d9c","5bb73ee6-765b-4965-b85a-c582cb4f966b","8b65ee66-bb34-437d-a46b-c42952ebb589","bb1cd127-8b03-4018-b75a-4864319de6b3","d038c207-392a-4d22-9377-06cc6e850e94","e6f7a7b0-4891-42e8-844e-2c68d9f295fb","9dfbbfad-34d5-4acc-a464-e0c248cb0621","8c1519c4-f6e6-404c-aa20-7bf256dfdc54","85c030d0-bab8-4504-9d1a-432fedaeb84e","3773be43-d443-45e8-ae8d-4aa91f2d1eae","d3143763-7b5d-4fca-9aee-19ead50c050f","7dd865ca-ccea-45d0-8f96-4b91b715d648","a9e35f68-8fce-412b-8ff1-edf5300937b4","31f03e18-0539-4377-bd6a-abb6bd64e23b","9730d587-4882-48ff-92c9-2610ce5d7782","f0326966-bd72-4ec5-b0cf-47016a4362e2","6f15f311-a7a9-4b20-8437-48bf5d062496","e88cd23e-00e5-4aad-b61d-e349b422a037","de4b1bf9-83a1-46cf-9f7f-fdd317c9fbb1","8d7b8601-6076-4c41-8293-36d42210b6a2","ced6b64d-34a1-4763-88a8-887d1333c06c","f1b0e4e2-4c31-41ef-a4d5-4d3cc2276e86","70e2b626-6dea-4f72-828e-82b46bccd97e","244f3730-45d4-43d9-9aab-7b4a42d1c6a1","eb84b436-6890-4110-a043-2d0766db9183","95c73b65-f0fe-4fef-ba9f-0fc7257bdf76","735c86d7-a19b-4ee0-9ae6-17d04feba50b","093a7715-297b-4b26-97de-2bea761b5ab1","b7110828-1d3e-497e-8187-e62e95e6b093","eadc4723-aff0-4ee8-86f8-6ab3b301bd84","885d9806-cca1-4b00-a52c-2a2427e9ad0e","ee718276-f48d-476c-8a62-ba8c64509166","f49b99f3-ad42-4af4-86dd-680ab523590b","f9297945-0779-4e0c-aa7f-ad6dfd17a4f2","179d54d3-3227-4187-8aa9-9476e0662a20","c041f177-751b-4671-a588-dbabc9451619","52e3a0c4-9946-4a2e-8396-49b67cdd8d73","2d4183db-3d15-46d7-908d-dec96f66aa85","092b5a6b-9380-4232-a646-100bf1b75043","a51ce53b-3a6f-4f4e-a779-7bdab6910a26","625b852c-70c4-4220-8551-a3c3a51dbb47","3d318b05-cb3b-4d21-b2ad-85bd64ddb91f","25cbc95d-0d65-4759-91b9-6d77ce2dc6d3","0899d5d8-52bf-44d8-9682-3b3d4ac6c028","ca31d020-93e5-4ede-aee7-14339d19b38c","0400f8a1-3cb7-4a5c-8e77-d5b3600654bb","5a0069e6-3482-492f-9861-00f299397ab6","95b96fdf-5c7a-4932-8eca-d3c69ad4cd3b","09d8ef8c-3b02-431d-b6ea-c309f0493df4","016f9200-d627-4f10-88aa-023b6cc2b32f","f5d5fbe7-101b-4c50-8312-818029574df5","ecc3fdde-809d-49c8-b908-b5877eb5ec33","72ffcbae-d024-4f81-819c-94d08ca19388","99c6a82e-243a-4301-b0bc-1b2b9daac28c","07c2de95-eb3a-4dcd-ae72-f363e49a4e4d","684b7121-ae51-47e8-9ba9-da26d724b1ed","0511e177-ba3c-4011-a5a3-4eb6640dd8c6","8d28071b-3016-4511-a26b-7ef3fc43a71a","18d9704c-171f-4adf-bea6-5f1c3b505619","02651513-51d4-4c55-9c4f-36946a57ef85","bb9eea00-b304-4df2-803b-b292f32c44fe","51f0c95a-d6f2-4dcd-b153-60da8399565f","d70b4712-da32-4831-8781-728cbdc98504","3eee39c2-c8c6-451d-bd0b-bfc1d3ea062c","71b69b53-6403-4fba-a99b-3b4de823b15c","d49b6be8-06f6-4c57-b6fc-c2552bf5e757","40835a9f-178d-4a27-8037-24a70193c518","f58fdcca-1111-466f-b551-ed4e0fed8a92","cfeb42be-8bc9-4e73-bd1d-ee5fa4c73f8f","d2e83fa8-4fa1-402a-8599-b8a7982e39cc","21ce2838-4d99-4b8f-8c4b-f572c13876a9","c5d8d7e3-e735-4391-9dc2-602494f8b495","fcd2ea6d-85c6-480e-8344-1472dd96afc1","be975ef9-431b-4103-9ec1-02c0f9b8c8f7","8c88e6b0-5113-49fc-9dce-5058780390d2","d82893f7-3e0d-4e42-b20d-1935832238c6","7fe86887-c8b0-4867-abfd-afd19a8269d2","c66491cc-db25-4158-a44d-923a595c4a3a","d0cfb03b-6470-4e5f-ad8c-9d0bfdc23da5","a4b65995-b3a6-485e-9eb6-96c38c9ba768","e568964e-a19c-469f-8355-d4f6f083ee5e","207c2fe9-f89b-4b29-b396-e6bb3f82559d","61358e7e-2778-4816-ab0f-4a509d2244e4","fa3d57ff-34d9-4b44-881b-a13fc2011702","8d7ff267-c17f-4ebf-aa97-07b59c4429f6","7cd435dd-2a3b-46de-a709-eb60d5cf3129","7c50a457-d791-4fd0-8768-92b3e1f53a9b","9f20d6a5-9c48-4d49-9e18-4c18df83616b","dd025e62-3bdd-4616-80f9-3d05189d74ae","d873c92c-9186-4c3e-bd39-ce9cdabc7d04","cb1b5808-e568-4eae-9bb2-fa4ccd01e99e","bec4a4ab-1947-443d-b7aa-e18572d2aa60","ea8368a3-54a3-4326-b674-46201b501631","ada7f6c9-5d7a-4537-8c44-1276d123125b","a4e86881-8ff7-414f-bdff-5abc13197b64","dae5debe-dafe-4b04-810d-5190284a71d9","cdbef818-a224-480d-bada-0259d6f34e9b","b12bfa4c-499a-4001-b54a-8bdb5a304433","f9fc190a-3fb5-45b3-a191-9b5ff5d488af","7b9115fa-95b8-406e-bc3e-3dc65a4cf95e","495d76cf-597c-4bf4-88f4-f966cae4a7fb","e85201a8-279e-4021-8a29-640109aa2557","01566b37-ea80-42b7-8f07-75773f085cae","d4ff160c-d2d0-4c9d-bee6-5a64ac492517","da28f839-51fb-4a76-a585-129be282bddf","6ba58d78-0e02-41d8-b339-1bec26502c2e","aded972c-6666-4f30-ad60-218895407222","db34de6b-ed45-41e8-8816-909050b387f3","a853a726-40ce-446f-a068-a7e7c06682d6","f212980f-ad3a-41bb-b31a-879a1005da11","d6932546-e0f4-49c3-a48f-7ae2abd7eba8","c8cce2f1-9176-4808-a0ca-3bfff971e370","c129953e-cd84-4e82-8c23-e47b59404a74","87d6cade-e9f2-4683-8387-897088f46320","ca905662-cd75-47b8-814e-5665f6035197","9d47d4ce-761b-4a8b-a709-6d9621c9da2f","4a2f5403-c6c6-4358-aca7-edbe2364a212","49f3ea7c-f31e-4f51-801a-a0186f179ef1","653d41bf-ea0c-4c25-9c21-1e332ad06414","0603b9a8-e343-40b8-b593-f69c390df866","201fb9ff-77fb-406f-9672-a6c0df5dce73","ade4dd44-0756-4ceb-89ca-308b297e7fc2"],"EmptyListMessage":null,"Multi":true,"Prompt":"Select at least one input which is of type Variable (Numeric, Categorical or Orderedcategorical).","ErrorMessage":"Variables: Variables accepts only inputs which are of type Variable (Numeric, Categorical or Orderedcategorical).","Invalid":null,"Required":true,"AllowedTypes":["V:numeric, categorical, ordered categorical"],"MinInputs":1,"MaxInputs":2147483647,"Height":4,"Duplicates":false,"Values":["885d9806-cca1-4b00-a52c-2a2427e9ad0e","ee718276-f48d-476c-8a62-ba8c64509166","f49b99f3-ad42-4af4-86dd-680ab523590b","f9297945-0779-4e0c-aa7f-ad6dfd17a4f2","179d54d3-3227-4187-8aa9-9476e0662a20","c041f177-751b-4671-a588-dbabc9451619"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formNames","Type":"CheckBox","Label":"Variable names","Value":false,"Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":"left","Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"binaryCat","Type":"CheckBox","Label":"Categorical as binary","Value":false,"Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":"left","Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formMeasure","Type":"ComboBox","Label":"Measure","Value":"Dissimilarities","Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Dissimilarities","Similarities"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formDistance","Type":"ComboBox","Label":"Distance measure","Value":"Euclidean","Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["Euclidean","Squared Euclidean","Maximum","Manhattan","Minkowski"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formStandardize","Type":"ComboBox","Label":"Data standardization","Value":"None","Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["None","z-scores","Range [-1,1]","Range [0,1]","Mean of 1","Standard deviation of 1"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":"formMeasureTransform","Type":"ComboBox","Label":"Measure transformation","Value":"None","Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":true,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":["None","Absolute values","Reverse sign","Range [0,1]"],"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":null},{"ItemGuid":"00000000-0000-0000-0000-000000000000","ControlName":null,"Type":null,"Label":null,"Value":null,"Allowed":null,"EmptyListMessage":null,"Multi":false,"Prompt":null,"ErrorMessage":null,"Invalid":null,"Required":false,"AllowedTypes":null,"MinInputs":0,"MaxInputs":0,"Height":0,"Duplicates":false,"Values":null,"CheckAlign":null,"Text":null,"Increment":0.0,"Min":0.0,"Max":0.0,"Vertical":true}]},"calculating":"Idle","showDebug":false,"layout":"OutputOnly","size":{"Width":576,"Height":512},"vSplit":0.25,"hSplit":0.45,"updateWarnings":true,"updateMode":"Manual","warnSlow":false,"outputSize":{"Width":576,"Height":511},"Options":{"debugconsole":false,"codeposition":"OutputOnly","size":{"width":576,"height":512},"splitH":0.45,"splitV":0.25,"update warnings":true,"updating":"Manual","warn slow":false}}