{"size":{"Width":472,"Height":179},"appearance":{"background":null,"padding":14,"font":{"family":"Courier New","size":10.0,"bold":false,"italic":false,"underline":false,"strikeout":false,"color":"rgb(0,72,168)"},"border":{"on":true,"size":0.0,"style":"solid","color":"#666"},"text":{"wrap":false,"hAlign":"left","vAlign":"top","resize":"ResizeShapeToFitText"}},"outputType":"WIDGET","widgetStateDict":{},"wikiPageTitle":null,"hasReferences":{"propertyAppearanceFont":false,"propertyAppearanceParagraph":false,"propertyAppearanceWrap":false,"propertyAppearanceBorder":false,"propertyAppearanceBackgroundColor":false,"propertyFilters":true,"propertyWeight":true},"hasChartData":false,"outputs":{"warning":"Outcome variable is a factor; it has been made numeric.\n Consider using another type of regression (e.g., Ordered Logit or Binary Logit).\r\nData has been automatically been converted to being numeric. Values are assigned in the order of the categories: 1, 2, 3... To use alternative numeric values you should instead transform the data prior including it in this analysis (e.g., by changing its structure): Age (Q2)\r\nThe outcome variable appears to contain categories (i.e., the values are non-negative integers). A limited dependent variable regression may be more appropriate (e.g., Ordered Logit for ordered categories, Multinomial Logit for unordered categories, Quasi-Poisson Regression for counts).","htmlwidgets":"<div id=\"htmlwidget_container\">\n <div id=\"htmlwidget-d9585093f9ab173d3881\" class=\"formattable_widget html-widget\" style=\"width:100%;height:500px;\" width=\"100%\" height=\"500\"></div>\n</div>\n<script type=\"application/json\" data-for=\"htmlwidget-d9585093f9ab173d3881\">{\"x\":{\"html\":\"<table class = \\\"table table-condensed\\\"style = \\\"margin:0; border-bottom: 2px solid; border-top: 2px solid; font-size:90%;\\\">\\n<caption><h3 class=\\\".h3\\\" style=\\\"color:#3E7DCC; text-align:left; margin-top:0px; margin-bottom:0\\\">Linear Regression: Age<\\/h3>\\n<caption style=\\\"caption-side:bottom;font-style:italic; font-size:90%;\\\">n = 300 cases used in estimation; R-squared: 0.00184; Correct predictions: 39%; AIC: 638.36; multiple comparisons correction: None<\\/caption><\\/caption>\\n <thead>\\n <tr>\\n <th style=\\\"text-align:left;\\\"> <\\/th>\\n <th style=\\\"text-align:right;\\\"> Estimate <\\/th>\\n <th style=\\\"text-align:right;\\\"> Standard Error <\\/th>\\n <th style=\\\"text-align:right;\\\"> <span style='font-style:italic;'>t<\\/span> <\\/th>\\n <th style=\\\"text-align:right;\\\"> <span style='font-style:italic;'>p<\\/span> <\\/th>\\n <\\/tr>\\n <\\/thead>\\n<tbody>\\n <tr>\\n <td style=\\\"text-align:left;\\\"> (Intercept) <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"color:blue\\\">2.39<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> 0.07 <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; font-weight: bold; background-color: #80b4f4\\\">36.71<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"font-weight: bold\\\">< .001<\\/span> <\\/td>\\n <\\/tr>\\n <tr>\\n <td style=\\\"text-align:left;\\\"> Gender: Female <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span>-0.06<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> 0.08 <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span style=\\\"display: block; padding: 0 4px; border-radius: 4px; background-color: #feeeec\\\">-0.74<\\/span> <\\/td>\\n <td style=\\\"text-align:right;\\\"> <span>.459<\\/span> <\\/td>\\n <\\/tr>\\n<\\/tbody>\\n<\\/table>\"},\"evals\":[],\"jsHooks\":[]}</script>\n<script type=\"application/htmlwidget-sizing\" data-for=\"htmlwidget-d9585093f9ab173d3881\">{\"viewer\":{\"width\":\"100%\",\"height\":350,\"padding\":15,\"fill\":false},\"browser\":{\"width\":\"100%\",\"height\":500,\"padding\":0,\"fill\":false}}</script>","htmlwidget-head":"{\"stylesheets\":[\"https://rserverhtmlwidgetasset.azureedge.net/bootstrap.min-eb19ad78829540621a18956d949c048b.css\"],\"javascript\":[\"https://rserverhtmlwidgetasset.azureedge.net/jquery.min-91a24ea414e8c447d647cecab86866c2.js\",\"https://rserverhtmlwidgetasset.azureedge.net/bootstrap.min-326d184c3c13feede563e4adcb5ff2a0.js\",\"https://rserverhtmlwidgetasset.azureedge.net/html5shiv.min-e70767555a95c48c08833356d362ccef.js\",\"https://rserverhtmlwidgetasset.azureedge.net/respond.min-4255ee1a060b15cb2432d0a497a6d510.js\",\"https://rserverhtmlwidgetasset.azureedge.net/htmlwidgets-cd5c5716917807e1b69e2493221698b2.js\",\"https://rserverhtmlwidgetasset.azureedge.net/formattable_widget-d2927ec9dec4a568bd3f4a62041c0ddb.js\"],\"attachments\":[],\"widget-cannot-re-render\":true}"},"secondsTaken":6.048,"updated":"2017-12-04T00:40:28.1991597Z","lastUpdatedMessage":null,"executedCode":null,"lastSavedCode":null,"isStandardRItem":true,"highlightedCodeSpans":null,"tableTransformations":"<TabularTransformer>\r\n <TabularTransform type=\"Truncation\" truncationHeaderType=\"Column\" />\r\n <TabularTransform />\r\n</TabularTransformer>","tabularFilteringOptions":null,"hasGuiControls":true,"calculating":"Idle","showDebug":false,"layout":"OutputOnly","vSplit":0.25,"hSplit":0.45,"updateWarnings":true,"updateMode":"Automatic","warnSlow":true,"Options":{"debugconsole":false,"codeposition":"OutputOnly","splitH":0.45,"splitV":0.25,"update warnings":true,"updating":"Automatic","warn slow":true}}